Conserved RNA Pseudoknots

نویسندگان

  • C. Thurner
  • Ivo L. Hofacker
  • Peter F. Stadler
چکیده

Pseudoknots are essential for the functioning of many small RNA molecules. In addition, viral RNAs often exhibit pseudoknots that are required at various stages of the viral life-cycle. Techniques for detecting evolutionarily conserved, and hence most likely functional RNA pseudoknots, are therefore of interest. Here we present an extension of the alidot approach that extracts conserved secondary structures from a multiple sequence alignment and predicted secondary structures of the individual sequences. In contrast to purely phylogenetic methods, this approach yields good results already for small samples of 10 sequences or even less.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A heuristic approach for detecting RNA H-type pseudoknots

MOTIVATION RNA H-type pseudoknots are ubiquitous pseudoknots that are found in almost all classes of RNA and thought to play very important roles in a variety of biological processes. Detection of these RNA H-type pseudoknots can improve our understanding of RNA structures and their associated functions. However, the currently existing programs for detecting such RNA H-type pseudoknots are stil...

متن کامل

SimulFold: Simultaneously Inferring RNA Structures Including Pseudoknots, Alignments, and Trees Using a Bayesian MCMC Framework

Computational methods for predicting evolutionarily conserved rather than thermodynamic RNA structures have recently attracted increased interest. These methods are indispensable not only for elucidating the regulatory roles of known RNA transcripts, but also for predicting RNA genes. It has been notoriously difficult to devise them to make the best use of the available data and to predict high...

متن کامل

TurboKnot: rapid prediction of conserved RNA secondary structures including pseudoknots

MOTIVATION Many RNA molecules function without being translated into proteins, and function depends on structure. Pseudoknots are motifs in RNA secondary structures that are difficult to predict but are also often functionally important. RESULTS TurboKnot is a new algorithm for predicting the secondary structure, including pseudoknotted pairs, conserved across multiple sequences. TurboKnot fi...

متن کامل

A phylogenetically conserved sequence within viral 3' untranslated RNA pseudoknots regulates translation.

Both the 68-base 5' leader (omega) and the 205-base 3' untranslated region (UTR) of tobacco mosaic virus (TMV) promote efficient translation. A 35-base region within omega is necessary and sufficient for the regulation. Within the 3' UTR, a 52-base region, composed of two RNA pseudoknots, is required for regulation. These pseudoknots are phylogenetically conserved among seven viruses from two d...

متن کامل

Bayesian sampling of evolutionarily conserved RNA secondary structures with pseudoknots

MOTIVATION Today many non-coding RNAs are known to play an active role in various important biological processes. Since RNA's functionality is correlated with specific structural motifs that are often conserved in phylogenetically related molecules, computational prediction of RNA structure should ideally be based on a set of homologous primary structures. But many available RNA secondary struc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004